OVERVIEW OF PROCESS PLANT PIPING SYSTEM DESIGN

By: Vincent A. Carucci
Carmagen Engineering, Inc.
Piping System

Piping system: conveys fluid between locations

Piping system includes:

- Pipe
- Fittings (e.g. elbows, reducers, branch connections, etc.)
- Flanges, gaskets, bolting
- Valves
- Pipe supports
ASME B31.3

- Provides requirements for:
 - Design
 - Materials
 - Fabrication
 - Erection
 - Inspection
 - Testing

- For process plants including
 - Petroleum refineries
 - Chemical plants
 - Pharmaceutical plants
 - Paper plants
 - Semiconductor plants
 - Textile plants
 - Cryogenic plants
Scope of ASME B31.3

- Piping and piping components, all fluid services:
 - Raw, intermediate, and finished chemicals
 - Petroleum products
 - Gas, steam, air, and water
 - Fluidized solids
 - Refrigerants
 - Cryogenic fluids
- Interconnections within packaged equipment
- Scope exclusions specified
Strength

- Yield and Tensile Strength
- Creep Strength
- Fatigue Strength
- Alloy Content
- Material Grain size
- Steel Production Process
Stress - Strain Diagram

S

A

B

E

C

ASME Career Development Series
Corrosion Resistance

- Deterioration of metal by chemical or electrochemical action
- Most important factor to consider
- Corrosion allowance \rightarrow added thickness
- Alloying increases corrosion resistance
Piping System Corrosion

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General or Uniform Corrosion</td>
<td>Uniform metal loss. May be combined with erosion if high-velocity fluids, or moving fluids containing abrasives.</td>
</tr>
<tr>
<td>Pitting Corrosion</td>
<td>Localized metal loss randomly located on material surface. Occurs most often in stagnant areas or areas of low-flow velocity.</td>
</tr>
<tr>
<td>Galvanic Corrosion</td>
<td>Occurs when two dissimilar metals contact each other in corrosive electrolytic environment. Anodic metal develops deep pits or grooves as current flows from it to cathodic metal.</td>
</tr>
<tr>
<td>Crevice Corrosion</td>
<td>Localized corrosion similar to pitting. Occurs at places such as gaskets, lap joints, and bolts where crevice exists.</td>
</tr>
<tr>
<td>Concentration Cell Corrosion</td>
<td>Occurs when different concentration of either a corrosive fluid or dissolved oxygen contacts areas of same metal. Usually associated with stagnant fluid.</td>
</tr>
<tr>
<td>Graphitic Corrosion</td>
<td>Occurs in cast iron exposed to salt water or weak acids. Reduces iron in cast iron, and leaves graphite in place. Result is extremely soft material with no metal loss.</td>
</tr>
</tbody>
</table>
Material Toughness

- Energy necessary to initiate and propagate a crack
- Decreases as temperature decreases
- Factors affecting fracture toughness include:
 - Chemical composition or alloying elements
 - Heat treatment
 - Grain size
Fabricability

- Ease of construction
- Material must be weldable
- Common shapes and forms include:
 - Seamless pipe
 - Plate welded pipe
 - Wrought or forged elbows, tees, reducers, crosses
 - Forged flanges, couplings, valves
 - Cast valves
Availability and Cost

• Consider economics
• Compare acceptable options based on:
 – Availability
 – Relative cost
Pipe Fittings

- Produce change in geometry
 - Modify flow direction
 - Bring pipes together
 - Alter pipe diameter
 - Terminate pipe
Elbow and Return

Figure 4.1

90° 45° 180° Return
Figure 4.2

Reducing Outlet Tee

Cross Tee
Reducer

Concentric

Eccentric

Figure 4.3
Welding Outlet Fitting

Figure 4.4
Cap

Figure 4.5
Lap-joint Stub End

Note square corner

Enlarged Section of Lap

Figure 4.6
Typical Flange Assembly

Figure 4.7
Types of Flange Attachment and Facing

<table>
<thead>
<tr>
<th>Flange Attachment Types</th>
<th>Flange Facing Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threaded Flanges</td>
<td>Flat Faced</td>
</tr>
<tr>
<td>Socket-Welded Flanges</td>
<td>Raised Face</td>
</tr>
<tr>
<td>Blind Flanges</td>
<td>Raised Face</td>
</tr>
<tr>
<td>Slip-On Flanges</td>
<td>Ring Joint</td>
</tr>
<tr>
<td>Lapped Flanges</td>
<td></td>
</tr>
<tr>
<td>Weld Neck Flanges</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1
Gaskets

- Resilient material
- Inserted between flanges
- Compressed by bolts to create seal
- Commonly used types
 - Sheet
 - Spiral wound
 - Solid metal ring
Flange Rating Class

- Based on ASME B16.5
- Acceptable pressure/temperature combinations
- Seven classes (150, 300, 400, 600, 900, 1,500, 2,500)
- Flange strength increases with class number
- Material and design temperature combinations without pressure indicated not acceptable
Material Specification List

<table>
<thead>
<tr>
<th>Material Groups</th>
<th>Forgings</th>
<th>Castings</th>
<th>Plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Group Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Carbon</td>
<td>A105</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A350</td>
<td>LF2</td>
</tr>
<tr>
<td></td>
<td>C-Mn-Si</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1.2</td>
<td>Carbon</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>2½ Ni</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>3½ Ni</td>
<td>A350</td>
<td>LF3</td>
</tr>
<tr>
<td>1.9</td>
<td>1Cr – ½Mo</td>
<td>A182</td>
<td>F12</td>
</tr>
<tr>
<td></td>
<td>1¼ Cr – ½Mo</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1¼ Cr – ½Mo - Si</td>
<td>A182</td>
<td>F11</td>
</tr>
<tr>
<td>1.10</td>
<td>2¼ Cr – 1Mo</td>
<td>A182</td>
<td>F22</td>
</tr>
</tbody>
</table>

Table 4.2
Pressure - Temperature Ratings

![Table 4.3](image)

<table>
<thead>
<tr>
<th>Material Group No.</th>
<th>Classes</th>
<th>Temp., °F</th>
<th>1.8</th>
<th>1.9</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>300</td>
<td>400</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>750</td>
<td>1000</td>
<td>290</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>570</td>
<td>765</td>
<td>260</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>555</td>
<td>740</td>
<td>200</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>555</td>
<td>740</td>
<td>170</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>555</td>
<td>740</td>
<td>140</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>555</td>
<td>740</td>
<td>125</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>545</td>
<td>725</td>
<td>110</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>515</td>
<td>685</td>
<td>95</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>485</td>
<td>650</td>
<td>85</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>450</td>
<td>600</td>
<td>50</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>320</td>
<td>425</td>
<td>35</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>215</td>
<td>290</td>
<td>20</td>
<td>215</td>
</tr>
</tbody>
</table>

Table 4.3
Sample Problem 1
Flange Rating

New piping system to be installed at existing plant.

Determine required flange class.

- Pipe Material: $1\frac{1}{4}\text{Cr} - \frac{1}{2}\text{Mo}$
- Design Temperature: 700°F
- Design Pressure: 500 psig
Sample Problem 1 Solution

• Determine Material Group Number (Fig. 4.2)
 Group Number = 1.9

• Find allowable design pressure at intersection of design temperature and Group No. Check Class 150.
 – Allowable pressure = 110 psig < design pressure
 – Move to next higher class and repeat steps

• For Class 300, allowable pressure = 570 psig

• Required flange Class: 300
Valves

- Functions
 - Block flow
 - Throttle flow
 - Prevent flow reversal
Full Port Gate Valve

1. Handwheel Nut
2. Handwheel
3. Stem Nut
4. Yoke
5. Yoke Bolting
6. Stem
7. Gland Flange
8. Gland
9. Gland Bolts or Gland Eye-bolts and nuts
10. Gland Lug Bolts and Nuts
11. Stem Packing
12. Plug
13. Lantern Ring
14. Backseat Bushing
15. Bonnet
16. Bonnet Gasket
17. Bonnet Bolts and Nuts
18. Gate
19. Seat Ring
20. Body
21. One-Piece Gland (Alternate)
22. Valve Port

Figure 5.1
Globe Valve

- Most economic for throttling flow
- Can be hand-controlled
- Provides “tight” shutoff
- Not suitable for scraping or rodding
- Too costly for on/off block operations
Check Valve

- Prevents flow reversal
- Does not completely shut off reverse flow
- Available in all sizes, ratings, materials
- Valve type selection determined by
 - Size limitations
 - Cost
 - Availability
 - Service
Swing Check Valve

Figure 5.2
Ball Check Valve

Figure 5.3
Lift Check Valve

Figure 5.4
Wafer Check Valve

Part Names:
1. Body
2. Plates
3. Hinge Pin
4. Hinge Pin Retainers
5. Stop Pin
6. Stop Pin Retainers
7. Spring
8. Plate Lug Bearings

Figure 5.5
Ball Valve

<table>
<thead>
<tr>
<th>No.</th>
<th>Part Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Body</td>
</tr>
<tr>
<td>2</td>
<td>Body Cap</td>
</tr>
<tr>
<td>3</td>
<td>Ball</td>
</tr>
<tr>
<td>4</td>
<td>Body Seal Gasket</td>
</tr>
<tr>
<td>5</td>
<td>Seat</td>
</tr>
<tr>
<td>6</td>
<td>Stem</td>
</tr>
<tr>
<td>7</td>
<td>Gland Flange</td>
</tr>
<tr>
<td>8</td>
<td>Stem Packing</td>
</tr>
<tr>
<td>9</td>
<td>Gland Follower</td>
</tr>
<tr>
<td>10</td>
<td>Thrust Bearing</td>
</tr>
<tr>
<td>11</td>
<td>Thrust Washer</td>
</tr>
<tr>
<td>12</td>
<td>Indicator Stop</td>
</tr>
<tr>
<td>13</td>
<td>Snap Ring</td>
</tr>
<tr>
<td>14</td>
<td>Gland Bolt</td>
</tr>
<tr>
<td>15</td>
<td>Stem Bearing</td>
</tr>
<tr>
<td>16</td>
<td>Body Stud Bolt & Nuts</td>
</tr>
<tr>
<td>17</td>
<td>Gland Cover</td>
</tr>
<tr>
<td>18</td>
<td>Gland Cover Bolts</td>
</tr>
<tr>
<td>19</td>
<td>Handle</td>
</tr>
</tbody>
</table>

Figure 5.6
Plug Valve

Figure 5.7

Wedge
Molded-In Resilient Seal
Sealing Slip
Valve Selection Process

General procedure for valve selection.

1. Identify design information including pressure and temperature, valve function, material, etc.

2. Identify potentially appropriate valve types and components based on application and function (i.e., block, throttle, or reverse flow prevention).
Valve Selection Process, cont’d

3. Determine valve application requirements (i.e., design or service limitations).

4. Finalize valve selection. Check factors to consider if two or more valves are suitable.

5. Provide full technical description specifying type, material, flange rating, etc.
Exercise 1 - Determine Required Flange Rating

- Pipe: $\frac{1}{4} \text{Cr} - \frac{1}{2} \text{Mo}$
- Flanges: A-182 Gr. F11
- Design Temperature: 900°F
- Design Pressure: 375 psig
Exercise 1 - Solution

1. Identify material specification of flange
 A-182 Gr, F11

2. Determine Material Group No. (Table 4.2)
 Group 1.9

3. Determine class using Table 4.3 with design temperature and Material Group No.
 – The lowest Class for design pressure of 375 psig is Class 300.
 – Class 300 has 450 psig maximum pressure at 900°F
Design Conditions

• General
 – Normal operating conditions
 – Design conditions

• Design pressure and temperature
 – Identify connected equipment and associated design conditions
 – Consider contingent conditions
 – Consider flow direction
 – Verify conditions with process engineer
Loading Conditions

Principal pipe load types

• Sustained loads
 – Act on system all or most of time
 – Consist of pressure and total weight load

• Thermal expansion loads
 – Caused by thermal displacements
 – Result from restrained movement

• Occasional loads
 – Act for short portion of operating time
 – Seismic and/or dynamic loading
Stresses Produced By Internal Pressure

Figure 6.1

\[S_l = \text{Longitudinal Stress} \]
\[S_c = \text{Circumferential (Hoop) Stress} \]
\[t = \text{Wall Thickness} \]
\[P = \text{Internal Pressure} \]
Stress Categorization

• Primary Stresses
 – Direct
 – Shear
 – Bending

• Secondary stresses
 – Act across pipe wall thickness
 – Cause local yielding and minor distortions
 – Not a source of direct failure
Stress Categorization, cont’d

• Peak stresses
 – More localized
 – Rapidly decrease within short distance of origin
 – Occur where stress concentrations and fatigue failure might occur
 – Significance equivalent to secondary stresses
 – Do not cause significant distortion
Allowable Stresses

Function of

– Material properties
– Temperature
– Safety factors

Established to avoid:

– General collapse or excessive distortion from sustained loads
– Localized fatigue failure from thermal expansion loads
– Collapse or distortion from occasional loads
B31.3 Allowable Stresses in Tension

Table 6.1

<table>
<thead>
<tr>
<th>Material</th>
<th>Spec. No/Grade</th>
<th>Basic Allowable Stress S, ksi. At Metal Temperature, °F.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500</td>
</tr>
<tr>
<td>Carbon Steel</td>
<td>A 106 B</td>
<td>20.0 20.0 20.0 20.0 18.9 17.3 16.5 10.8 6.5 2.5 1.0</td>
</tr>
<tr>
<td>C - ½Mo</td>
<td>A 335 P1</td>
<td>18.3 18.3 17.5 16.9 16.3 15.7 15.1 13.5 12.7 4.0 2.4</td>
</tr>
<tr>
<td>1¼ - ½Mo</td>
<td>A 335 P11</td>
<td>20.0 18.7 18.0 17.5 17.2 16.7 15.6 15.0 12.8 6.3 2.8 1.2</td>
</tr>
<tr>
<td>18Cr - 8Ni pipe</td>
<td>A 312 TP304</td>
<td>20.0 20.0 20.0 18.7 17.5 16.4 16.0 15.2 14.6 13.8 9.7 6.0 3.7 2.3 1.4</td>
</tr>
<tr>
<td>16Cr - 12Ni-2Mo pipe</td>
<td>A 312 TP316</td>
<td>20.0 20.0 20.0 19.3 17.9 17.0 16.3 15.9 15.5 15.3 12.4 7.4 4.1 2.3 1.3</td>
</tr>
</tbody>
</table>
Pipe Thickness Required For Internal Pressure

\[t = \frac{PD}{2(SE+PY)} \]

- \(P \) = Design pressure, psig
- \(D \) = Pipe outside diameter, in.
- \(S \) = Allowable stress in tension, psi
- \(E \) = Longitudinal-joint quality factor
- \(Y \) = Wall thickness correction factor

- \(t_m = t + CA \)

- \(t_{nom} = \frac{t_m}{0.875} \)
<table>
<thead>
<tr>
<th>Spec. No.</th>
<th>Class (or Type)</th>
<th>Description</th>
<th>E_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>API 5L</td>
<td></td>
<td>Seamless pipe</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric resistance welded pipe</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric fusion welded pipe, double butt, straight or spiral seam</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Furnace butt welded</td>
<td></td>
</tr>
<tr>
<td>A 53</td>
<td>Type S</td>
<td>Seamless pipe</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Type E</td>
<td>Electric resistance welded pipe</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Type F</td>
<td>Furnace butt welded pipe</td>
<td>0.60</td>
</tr>
<tr>
<td>A 106</td>
<td></td>
<td>Seamless pipe</td>
<td>1.00</td>
</tr>
<tr>
<td>A 333</td>
<td></td>
<td>Seamless pipe</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric resistance welded pipe</td>
<td>0.85</td>
</tr>
<tr>
<td>A 335</td>
<td></td>
<td>Seamless pipe</td>
<td>1.00</td>
</tr>
<tr>
<td>A 312</td>
<td></td>
<td>Seamless pipe</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric fusion welded pipe, double butt seam</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric fusion welded pipe, single butt seam</td>
<td>0.80</td>
</tr>
<tr>
<td>A 358</td>
<td>1, 3, 4, 5</td>
<td>Electric fusion welded pipe, 100% radiographed</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric fusion welded pipe, spot radiographed</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric fusion welded pipe, double butt seam</td>
<td>0.85</td>
</tr>
<tr>
<td>B 161</td>
<td></td>
<td>Seamless pipe and tube</td>
<td>1.00</td>
</tr>
<tr>
<td>B 514</td>
<td></td>
<td>Welded pipe</td>
<td>0.80</td>
</tr>
<tr>
<td>B 675</td>
<td>All</td>
<td>Welded pipe</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Carbon Steel

Low and Intermediate Alloy Steel

Stainless Steel

Nickel and Nickel Alloy

Table 6.2
<table>
<thead>
<tr>
<th>Materials</th>
<th>900 & lower</th>
<th>950</th>
<th>1000</th>
<th>1050</th>
<th>1100</th>
<th>1150 & up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferritic Steels</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Austenitic Steels</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Other Ductile Metals</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Cast iron</td>
<td>0.0</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 6.3
Curved and Mitered Pipe

• Curved pipe
 – Elbows or bends
 – Same thickness as straight pipe

• Mitered bend
 – Straight pipe sections welded together
 – Often used in large diameter pipe
 – May require larger thickness
 • Function of number of welds, conditions, size
Sample Problem 2 -
Determine Pipe Wall Thickness

Design temperature: 650°F
Design pressure: 1,380 psig.
Pipe outside diameter: 14 in.
Material: ASTM A335, Gr. P11 (\(\frac{1}{4}Cr - \frac{1}{2}Mo\)), seamless
Corrosion allowance: 0.0625 in.
Sample Problem 2 - Solution

\[t = \frac{PD}{2(SE + PY)} \]

\[t = \frac{1,380 \times 14}{2[(16,200 \times 1) + (1,380 \times 0.4)]} \]

\[t = 0.577 \text{ in.} \]
Sample Problem 2 - Solution, cont’d

\[t_m = t + c = 0.577 + 0.0625 = 0.6395 \text{ in.} \]

\[t_{nom} = \frac{0.6395}{0.875} = 0.731 \text{ in.} \]
Welded Branch Connection

Figure 6.2
Reinforcement Area

\[d_1 = \frac{D_b - 2(T_b - c)}{\sin \beta} \]

\(d_1 \) = Effective length removed from run pipe, in.
\(D_b \) = Branch outside diameter, in.
\(T_b \) = Minimum branch thickness, in.
\(c \) = Corrosion allowance, in.
\(\beta \) = Acute angle between branch and header
Required Reinforcement Area

Required reinforcement area, A_1:

$$A_1 = t_h d_1 (2 - \sin \beta)$$

Where: $t_h = \text{Minimum required header thickness, in.}$
Reinforcement Pad

• Provides additional reinforcement
• Usually more economical than increasing wall thickness
• Selection variables
 – Material
 – Outside diameter
 – Wall thickness

\[A_4 = \left(\frac{D_p - D_b}{\sin \beta} \right) T_r \]
Sample Problem 3

- Pipe material: Seamless, A 106/Gr. B for branch and header, $S = 16,500$ psi
- Design conditions: 550 psig @ $700^\circ F$
- $c = 0.0625$ in.
- Mill tolerance: 12.5%
Sample Problem 3, cont’d

• Nominal Pipe Thicknesses: Header: 0.562 in.
 Branch: 0.375 in.

• Required Pipe Thicknesses: Header: 0.395 in.
 Branch: 0.263 in.

• Branch connection at 90° angle
Sample Problem 3 - Solution

\[d_1 = \frac{D_b - 2(T_b - c)}{\sin \beta} \]

\[d_1 = \frac{16 - 2(0.375 \times 0.875 - 0.0625)}{\sin 90^\circ} = 15.469 \text{ in.} \]

\[A_1 = t_h d_1 (2 - \sin \beta) \]

\[A_1 = 0.395 \times 15.469 (2 - \sin 90^\circ) = 6.11 \text{ in.}^2 \]
Sample Problem 3 - Solution, cont’d

• Calculate excess area available in header, A_2.

$$A_2 = (2d_2 - d_1)(T_h - t_h - c)$$

\begin{align*}
d_2 &= d_1 = 15.469 \text{ in.} < D_h = 24 \text{ in.} \\
A_2 &= (2 \times 15.469 - 15.469) (0.875 \times 0.562 - 0.395 - 0.0625) \\
A_2 &= 0.53 \text{ in.}^2
\end{align*}
Sample Problem 3 - Solution, cont’d

• Calculate excess area available in branch, A_3.

$$A_3 = \frac{2L_4(T_b - t_b - c)}{\sin \beta}$$

$L_4 = 2.5 \times (0.875 \times 0.375 - 0.0625) = 0.664$ in.

$$A_3 = \frac{2 \times 0.664 \times (0.875 \times 0.375 - 0.263 - 0.0625)}{\sin 90^\circ} = 0.003$ in.2
Sample Problem 3 - Solution, cont’d

- Calculate other excess area available, A_4.

 $$A_4 = 0.$$

- Total Available Area:

 $$A_T = A_2 + A_3 + A_4$$

 $$A_T = 0.53 + 0.003 + 0 = 0.533 \text{ in.}^2 \text{ available reinforcement.}$$

 $$A_T < A_1$$

 \therefore \text{ Pad needed}
Sample Problem 3 - Solution, cont’d

• Reinforcement pad: A106, Gr. B, 0.562 in. thick
• Recalculate Available Reinforcement

\[L_{41} = 2.5 \times (T_h - c) = 2.5 \times (0.875 \times 0.562 - 0.0625) = 1.073 \text{ in.} \]

\[L_{42} = 2.5 \times (T_b - c) + T_r \]

\[= 2.5 \times (0.875 \times 0.375 - 0.0625) + 0.562 \times (0.875) = 1.16 \text{ in} \]
Sample Problem 3 - Solution, cont’d

Therefore, \(L_4 = 1.073 \text{ in.} \)

\[
A_3 = \frac{2L_4(T_b - t_b - c)}{\sin \beta}
\]

\[
A_3 = \frac{2 \times 1.073 \times (0.875 \times 0.375 - 0.263 - 0.0625)}{\sin 90^\circ}
\]

\[
A_3 = 0.005 \text{ in.}^2 \quad (\text{vs. the } 0.003 \text{ in.}^2 \text{ previously calculated})
\]

\[
A_T = A_2 + A_3 + A_4 = 0.53 + 0.005 + 0 = 0.535 \text{ in.}^2
\]
Sample Problem 3 - Solution, cont’d

- Calculate additional reinforcement required and pad dimensions:

\[A_4 = 6.11 - 0.535 = 5.575 \text{ in.}^2 \]

Pad diameter, \(D_p \) is:

\[T_r = 0.562 \times (0.875) = 0.492 \text{ in.} \]

\[D_p = \frac{A_4}{T_r} + \frac{D_b}{\sin\beta} = \frac{5.575}{0.492} + 16 = 27.3 \]

Since \(2d_2 > D_p \), pad diameter is acceptable
Exercise 2 - Determine Required Pipe Wall Thickness

- Design Temperature: 260°F
- Design Pressure: 150 psig
- Pipe OD: 30 in.
- Pipe material: A 106, Gr. B seamless
- Corrosion allowance: 0.125
- Mill tolerance: 12.5%
- Thickness for internal pressure and nominal thickness?
Exercise 2 - Solution

• From Tables 6.1, 6.2, and 6.3 obtain values:
 – S = 20,000 psi
 – E = 1.0
 – Y = 0.4

• Thickness calculation:

\[
t = \frac{PD}{2(SE + PY)} = \frac{150 \times 30}{2[(20,000 \times 1.0) + (150 \times 0.04)]}
\]

\[
t = 0.112 \text{ in.}
\]
Exercise 2 - Solution, cont’d

- Corrosion allowance calculation:

\[t_m = t + CA = 0.112 + 0.125 \]
\[t_m = 0.237 \text{ in.} \]

- Mill tolerance calculation:

\[t_{nom} = \frac{t_m}{0.875} = \frac{0.237}{0.875} \]
\[t_{nom} = 0.271 \text{ in.} \]
Layout Considerations

- **Operational**
 - Operating and control points easily reached

- **Maintenance**
 - Ample clearance for maintenance equipment
 - Room for equipment removal
 - Sufficient space for access to supports

- **Safety**
 - Consider personnel safety
 - Access to fire fighting equipment

Pipe Supports and Restraints

- **Supports**
 - Absorb system weight
 - Reduce:
 + longitudinal pipe stress
 + pipe sag
 + end point reaction loads

- **Restraints**
 - Control or direct thermal movement due to:
 + thermal expansion
 + imposed loads
Support and Restraint Selection Factors

- Weight load
- Available attachment clearance
- Availability of structural steel
- Direction of loads and/or movement
- Design temperature
- Vertical thermal movement at supports
Rigid Supports

Figure 7.1
Hangers

Figure 7.2
Flexible Supports

Figure 7.3

Typical Variable-Load Spring Support

Typical Constant-Load Spring Support Mechanism

Small Change in Effective Lever Arm

Load and Deflection Scale

Large Change in Effective Lever Arm

Relatively Constant Load
Restraints

• Control, limit, redirect thermal movement
 – Reduce thermal stress
 – Reduce loads on equipment connections

• Absorb imposed loads
 – Wind
 – Earthquake
 – Slug flow
 – Water hammer
 – Flow induced-vibration
Restraints, cont’d

• Restraint Selection
 – Direction of pipe movement
 – Location of restraint point
 – Magnitude of load
Anchors and Guides

• Anchor
 – Full fixation
 – Permits very limited (if any) translation or rotation

• Guide
 – Permits movement along pipe axis
 – Prevents lateral movement
 – May permit pipe rotation
Restraints - Anchors

Anchor

Anchor

Partial Anchor

Figure 7.4
Restraints - Guides

Figure 7.5

Guide

Vertical Guide

Guide

Guide
Piping Flexibility

- Inadequate flexibility
 - Leaky flanges
 - Fatigue failure
 - Excessive maintenance
 - Operations problems
 - Damaged equipment

- System must accommodate thermal movement
Flexibility Analysis

- Considers layout, support, restraint
- Ensures thermal stresses and reaction loads are within allowable limits
- Anticipates stresses due to:
 - Elevated design temperatures
 + Increases pipe thermal stress and reaction loads
 + Reduces material strength
 - Pipe movement
 - Supports and restraints
Flexibility Analysis, cont’d

- Evaluates loads imposed on equipment
- Determines imposed loads on piping system and associated structures
- Loads compared to industry standards
 - Based on tables
 - Calculated
Design Factors

- Layout
- Component design details
- Fluid service
- Connected equipment type
- Operating scenarios
- Pipe diameter, thickness
- Design temperature and pressure
- End-point movements
- Existing structural steel locations
- Special design considerations
Equipment Nozzle Load Standards and Parameters

<table>
<thead>
<tr>
<th>Equipment Item</th>
<th>Industry Standard</th>
<th>Parameters Used To Determine Acceptable Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal Pumps</td>
<td>API 610</td>
<td>Nozzle size</td>
</tr>
<tr>
<td>Centrifugal Compressors</td>
<td>API 617, 1.85 times NEMA SM-23 allowable</td>
<td>Nozzle size, material</td>
</tr>
<tr>
<td>Air-Cooled Heat Exchangers</td>
<td>API 661</td>
<td>Nozzle size</td>
</tr>
<tr>
<td>Tank Nozzles</td>
<td>API 650</td>
<td>Nozzle size, tank diameter, height, shell thickness, nozzle elevation.</td>
</tr>
<tr>
<td>Steam Turbines</td>
<td>NEMA SM-23</td>
<td>Nozzle size</td>
</tr>
</tbody>
</table>

Table 7.1
Computer Analysis

- Used to perform detailed piping stress analysis
- Can perform numerous analyses
- Accurately completes unique and difficult functions
 - Time-history analyses
 - Seismic and wind motion
 - Support motion
 - Finite element analysis
 - Animation effects
Computer Analysis Guidelines

<table>
<thead>
<tr>
<th>Type Of Piping</th>
<th>Pipe Size, NPS</th>
<th>Maximum Differential Flexibility Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General piping</td>
<td>≥ 4</td>
<td>≥ 400°F</td>
</tr>
<tr>
<td></td>
<td>≥ 8</td>
<td>≥ 300°F</td>
</tr>
<tr>
<td></td>
<td>≥ 12</td>
<td>≥ 200°F</td>
</tr>
<tr>
<td></td>
<td>≥ 20</td>
<td>any</td>
</tr>
<tr>
<td>For rotating equipment</td>
<td>≥ 3</td>
<td>Any</td>
</tr>
<tr>
<td>For air-fin heat exchangers</td>
<td>≥ 4</td>
<td>Any</td>
</tr>
<tr>
<td>For tankage</td>
<td>≥ 12</td>
<td>Any</td>
</tr>
</tbody>
</table>

Table 7.2
Piping Flexibility Temperature

- Analysis based on largest temperature difference imposed by normal and abnormal operating conditions
- Results give:
 - Largest pipe stress range
 - Largest reaction loads on connections, supports, and restraints
- Extent of analysis depends on situation
Normal Temperature Conditions To Consider

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable Operation</td>
<td>Temperature range expected for most of time plant is in operation. Margin above operating temperature (i.e., use of design temperature rather than operating temperature) allows for process flexibility.</td>
</tr>
<tr>
<td>Startup and Shutdown</td>
<td>Determine if heating or cooling cycles pose flexibility problems. For example, if tower is heated while attached piping remains cold, piping flexibility should be checked.</td>
</tr>
<tr>
<td>Regeneration and Decoking Piping</td>
<td>Design for normal operation, regeneration, or decoking, and switching from one service to the other. An example is furnace decoking.</td>
</tr>
<tr>
<td>Spared Equipment</td>
<td>Requires multiple analyses to evaluate expected temperature variations, for no flow in some of piping, and for switching from one piece of equipment to another. Common example is piping for two or more pumps with one or more spares.</td>
</tr>
</tbody>
</table>

Table 7.3
Abnormal Temperature Conditions To Consider

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Cooling Medium Flow</td>
<td>Temperature changes due to loss of cooling medium flow should be considered. Includes pipe that is normally at ambient temperature but can be blocked in, while subject to solar radiation.</td>
</tr>
<tr>
<td>Steamout for Air or Gas Freeing</td>
<td>Most on-site equipment and lines, and many off-site lines, are freed of gas or air by using steam. For 125 psig steam, 300°F is typically used for metal temperature. Piping connected to equipment which will be steamed out, especially piping connected to upper parts of towers, should be checked for tower at 300°F and piping at ambient plus 50°F. This may govern flexibility of lines connected to towers that operate at less than 300°F or that have a smaller temperature variation from top to bottom.</td>
</tr>
<tr>
<td>No Process Flow While Heating Continues</td>
<td>If process flow can be stopped while heat is still being applied, flexibility should be checked for maximum metal temperature. Such situations can occur with steam tracing and steam jacketing.</td>
</tr>
</tbody>
</table>

Table 7.4
Extent of Analysis

- Extent depends on situation
- Analyze right combination of conditions
- Not necessary to include system sections that are irrelevant to analysis results
Modifying System Design

- Provide more offsets or bends
- Use more expansion loops
- Install expansion joints
- Locate restraints to:
 - Minimize thermal and friction loads
 - Redirect thermal expansion
- Use spring supports to reduce large vertical thermal loads
- Use Teflon bearing pads to reduce friction loads
System Design Considerations

• Pump systems
 – Operating vs. spared pumps

• Heat traced piping systems
 – Heat tracing
 + Reduces liquid viscosity
 + Prevents condensate accumulation
 – Tracing on with process off
System Design Considerations, cont’d

- Atmospheric storage tank
 - Movement at nozzles
 - Tank settlement
- Friction loads at supports and restraints
 - Can act as anchors or restraints
 - May cause high pipe stresses or reaction loads
- Air-cooled heat exchangers
 - Consider header box and bundle movement
Tank Nozzle

Figure 7.6
Welding

- Welding is primary way of joining pipe
- Provides safety and reliability
- Qualified welding procedure and welders
- Butt welds used for:
 - Pipe ends
 - Butt-weld-type flanges or fittings to pipe ends
 - Edges of formed plate
Butt-Welded Joint Designs
Equal Thickness

Figure 8.1

(a) Standard End Preparation of Pipe
(b) Standard End Preparation of Butt-Welding Fittings and Optional End Preparation of Pipe 7/8 in. and Thinner
(c) Suggested End Preparation, Pipe and Fittings Over 7/8 in. Thickness
Butt-Welded Joint Designs
Unequal Thickness

Figure 8.2
Fillet Welds

Figure 8.3
Weld Preparation

- Welder and equipment must be qualified
- Internal and external surfaces must be clean and free of paint, oil, rust, scale, etc.
- Ends must be:
 - Suitably shaped for material, wall thickness, welding process
 - Smooth with no slag from oxygen or arc cutting
Preheating

• Minimizes detrimental effects of:
 – High temperature
 – Severe thermal gradients

• Benefits include:
 – Dries metal and removes surface moisture
 – Reduces temperature difference between base metal and weld
 – Helps maintain molten weld pool
 – Helps drive off absorbed gases
Postweld Heat Treatment (PWHT)

- Primarily for stress relief
 - Only reason considered in B31.3
- Averts or relieves detrimental effects
 - Residual stresses
 - Shrinkage during cooldown
 - Bending or forming processes
 - High temperature
 - Severe thermal gradients
Postweld Heat Treatment (PWHT), cont’d

• Other reasons for PWHT to be specified by user
 – Process considerations
 – Restore corrosion resistance of normal grades of stainless steel
 – Prevent caustic embrittlement of carbon steel
 – Reduce weld hardness
Storage and Handling

- Store piping on mounds or sleepers
- Stacking not too high
- Store fittings and valves in shipping crates or on racks
- End protectors firmly attached
- Lift lined and coated pipes and fittings with fabric or rubber covered slings and padding
Pipe Fitup and Tolerances

- Good fitup essential
 - Sound weld
 - Minimize loads
- Dimensional tolerances
- Flange tolerances
Pipe Alignment
Load Sensitive Equipment

• Special care and tighter tolerances needed
• Piping should start at nozzle flange
 – Initial section loosely bolted
 – Gaskets used during fabrication to be replaced
• Succeeding pipe sections bolted on
• Field welds to join piping located near machine
Load Sensitive Equipment, cont’d

- Spring supports locked in cold position during installation and adjusted in locked position later
- Final bolt tensioning follows initial alignment of nozzle flanges
- Final nozzle alignment and component flange boltup should be completed after replacing any sections removed
Load Sensitive Equipment, cont’d

- More stringent limits for piping > NPS 3
- Prevent ingress of debris during construction
Flange Joint Assembly

- Primary factors
 - Selection
 - Design
 - Preparation
 - Inspection
 - Installation

- Identify and control causes of leakage
Flange Preparation, Inspection, and Installation

- Redo damaged surfaces
- Clean faces
- Align flanges
- Lubricate threads and nuts
- Place gasket properly
- Use proper flange boltup procedure
“Criss-Cross”
Bolt-tightening Sequence

Figure 8.4
Causes of Flange Leakage

- Uneven bolt stress
- Improper flange alignment
- Improper gasket centering
- Dirty or damaged flange faces
- Excessive loads at flange locations
- Thermal shock
- Improper gasket size or material
- Improper flange facing
Inspection

• Defect identification
• Weld inspection
 – Technique
 – Weld type
 – Anticipated type of defect
 – Location of weld
 – Pipe material
Typical Weld Imperfections

Lack of Fusion Between Weld Bead and Base Metal
 a) Side Wall Lack of Fusion
 b) Lack of Fusion Between Adjacent Passes

Incomplete Filling at Root on One Side Only
 c) Incomplete Penetration Due to Internal Misalignment
 d) Incomplete Penetration of Weld Groove

Root Bead Fused to Both Inside Surfaces but Center of Root Slightly Below Inside Surface of Pipe (Not Incomplete Penetration)
 e) Concave Root Surface (Suck-Up)
 f) Undercut

g) Excess External Reinforcement

Figure 9.1
Weld Inspection Guidelines

<table>
<thead>
<tr>
<th>Type of Inspection</th>
<th>Situation/Weld Type</th>
<th>Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual</td>
<td>All welds.</td>
<td>• Minor structural welds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cracks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slag inclusions.</td>
</tr>
<tr>
<td>Radiography</td>
<td>• Butt welds.</td>
<td>• Gas pockets.</td>
</tr>
<tr>
<td></td>
<td>• Girth welds.</td>
<td>• Slag inclusions.</td>
</tr>
<tr>
<td></td>
<td>• Miter groove welds.</td>
<td>• Incomplete penetration.</td>
</tr>
<tr>
<td>Magnetic Particle</td>
<td>• Ferromagnetic materials.</td>
<td>• Cracks.</td>
</tr>
<tr>
<td></td>
<td>• For flaws up to 6 mm (1/4 in.) beneath the surface.</td>
<td>• Porosity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of fusion.</td>
</tr>
<tr>
<td>Liquid Penetrant</td>
<td>• Ferrous and nonferrous materials.</td>
<td>• Cracks.</td>
</tr>
<tr>
<td></td>
<td>• Intermediate weld passes.</td>
<td>• Seams.</td>
</tr>
<tr>
<td></td>
<td>• Weld root pass.</td>
<td>• Porosity.</td>
</tr>
<tr>
<td></td>
<td>• Simple and inexpensive.</td>
<td>• Folds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shrinkage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Surface defects.</td>
</tr>
<tr>
<td>Ultrasonic</td>
<td>Confirm high weld quality in pressure-containing joints.</td>
<td>• Laminations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slag inclusions in thick plates.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Subsurface flaws.</td>
</tr>
</tbody>
</table>

Table 9.1
Testing

- Pressure test system to demonstrate integrity
- Hydrostatic test unless pneumatic approved for special cases
- Hydrostatic test pressure
 - $\geq 1\frac{1}{2}$ times design pressure
Testing, cont’d

– For design temperature > test temperature:

\[
P_T = \frac{1.5PS_T}{S}
\]

\(S_T/S\) must be \(\leq 6.5\)

- \(P_T = \) Minimum hydrostatic test pressure, psig
- \(P = \) Internal design pressure, psig
- \(S_T = \) Allowable stress at test temperature, psi
- \(S = \) Allowable stress at design temperature, psi
Testing, cont’d

- Pneumatic test at 1.1P
- Instrument take-off piping and sampling piping strength tested with connected equipment
Nonmetallic Piping

• Thermoplastic Piping
 – Can be repeatedly softened and hardened by increasing and decreasing temperature

• Reinforced Thermosetting Resin Piping (RTR)
 – Fabricated from resin which can be treated to become infusible or insoluble
Nonmetallic Piping, cont’d

• No allowances for pressure or temperature variations above design conditions
• Most severe coincident pressure and temperature conditions determine design conditions
Nonmetallic Piping, cont’d

• Designed to prevent movement from causing:
 – Failure at supports
 – Leakage at joints
 – Detrimental stresses or distortions

• Stress-strain relationship inapplicable
Nonmetallic Piping, cont’d

• Flexibility and support requirement same as for piping in normal fluid service. In addition:
 – Piping must be supported, guided, anchored to prevent damage.
 – Point loads and narrow contact areas avoided
 – Padding placed between piping and supports
 – Valves and load transmitting equipment supported independently to prevent excessive loads.
Nonmetallic Piping, cont’d

• Thermoplastics not used in flammable service, and safeguarded in most fluid services.
• Joined by bonding
Category M Fluid Service

Category M Fluid

• Significant potential for personnel exposure

• Single exposure to small quantity can cause irreversible harm to breathing or skin.
Category M Fluid Service, cont’d

- Requirements same as for piping in normal fluid service. In addition:
 - Design, layout, and operation conducted with minimal impact and shock loads.
 - Detrimental vibration, pulsation, resonance effects to be avoided or minimized.
 - No pressure-temperature variation allowances.
Category M Fluid Service, cont’d

– Most severe coincident pressure-temperature conditions determine design temperature and pressure.
– All fabrication and joints visually examined.
– Sensitive leak test required in addition to other required testing.
Category M Fluid Service, cont’d

- Following may not be used
 - Miter bends not designated as fittings, fabricated laps, nonmetallic fabricated branch connections.
 - Nonmetallic valves and specialty components.
 - Threaded nonmetallic flanges.
 - Expanded, threaded, caulked joints.
High Pressure Piping

• Ambient effects on design conditions
 – Pressure reduction based on cooling of gas or vapor
 – Increased pressure due to heating of a static fluid
 – Moisture condensation
High Pressure Piping, cont’d

• Other considerations
 – Dynamic effects
 – Weight effects
 – Thermal expansion and contraction effects
 – Support, anchor, and terminal movement
High Pressure Piping, cont’d

• Testing
 – Each system hydrostatically or pneumatically leak tested
 – Each weld and piping component tested
 – Post installation pressure test at 110% of design pressure if pre-installation test was performed

• Examination
 – Generally more extensive than normal fluid service
Summary

- Process plant piping much more than just pipe
- ASME B31.3 covers process plant piping
- Covers design, materials, fabrication, erection, inspection, and testing
- Course provided overview of requirements